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ABSTRACT

This thesis analyzes the dynamic response of a third order regulator sys-

tem. Particular emphasis is placed upon the loss of stability of the nominal

equilibrium state. The system utilized in this research models the funda-

mental turning dynamics of an autonomous vehicle. We make extensive use

of bifurcation theory methods in analyzing the dynamics after initial loss

of stability. The effective gain of the system is used as the main bifurcation

parameter, since this is directly related to the gain margin for linear systems.

It is shown that the nonlinear characteristics of the system may significantly

affect the practical significance of its gain margin, as a measure of robustness

to parameter variations, unmodeled dynamics, and external disturbances.
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I. INTRODUCTION

A. PROBLEM STATEMENT

It is well known that in linear dynamical systems one of the most popular

ways of assessing the stability properties of the system is through its gain

margin (Friedland, 1986). Roughly speaking, the gain margin designates the

extent at which the effective gain of the system can be increased before loss of

stability occurs. Therefore, it is widely used in linear control system design

in order to quantify a measure of robustness of the system with regards to

parameter variations, disturbances, and unmodelled dynamics.

In this work we examine the concept of gain margin in the light of nonlin-

ear systems. We assume that the baseline linear system is an approximation

to a nonlinear system. For demonstration purposes we employ a third order,

single input single output system, with cubic nonlinearities. This system

models the fundamental turning dynamics of a marine vehicle (Oral, 1993).

Primary loss of stability is shown to occur in the form of generic bifurca-

tions to periodic solutions (Guckenheimer & Holmes, 1983). We use center

manifold reduction techniques and integral averaging in order to capture the

stability properties of the resulting limit cycles (Chow & Mallet-Paret, 1977).

The main conclusion of this work is that the linear concept of a gain margin

can be used as a reliable measure of stability only in the case of supercritical

bifurcations to periodic solutions. In the case of subcritical bifurcations, a
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modification is necessary which is based on the nonlinear characteristics of

the system. We propose the use of a parameter which governs transitions

from supercritical to subcritical bifurcations as a nonlinear gain margin of

the system. Results based on numerical simulations support the analytical

predictions of this work.

B. MATHEMATICAL MODEL

Consider the ideal 3rd-order regulator system shown in Figure 1, where

y is the actual output, y,,f = 0 is the reference input, and,

1
33 + a 82 + a +to 8 (1)

where the coefficients ao correspond to a stable polynomial. In state space

form, the system depicted in Figure I is written as,

il = W2, (2)

i2 = , (3)

23 = -a 2 0 3 - aji 2 - (ao + K) 1 ,, (4)

where the state vector is,

Physically, we can think of this system as a representation of the funda-

mental turning dynamics of a marine vehicle. In this context, xi represents

the vehicle's lateral deviation from the commanded straight line path, 22 is

2



Figure 1: Ideal 3rd-order regulator system

the orientation angle, and W3 the turning rate. To account for the geometric

nonlinearities, the first state equation (2) is written as,

3a
21 = 22 + ••2, (6)

where 7 < 0 for softening spring characteristics. To account for possible

"over-steering" or "under-steering" effects, we modify the output of the

block K of Figure 1, to

control effort = -Ky - Kay 3 , (7)

instead of -Ky of the linear element. Therefore, the nonlinear system under

consideration is,

33

Z2 =0 0 1 W2 0 (8)
ii3 -(a0 + K) -a, -a2 M3 -K3z•



C. OUTLINE OF ANALYSIS

The following steps are performed in order to analyze system (8). First,

application of Routh's criterion yields the value of the gain margin, or the

critical value of K for stability. Then we rewrite the system of equations in its

normal coordinate form, and use the center manifold theorem to reduce the

system into a two dimensional system. We apply the method of averaging

to the reduced system, and finally, we introduce polar coordinates to the

averaged system in order to reveal the existence of limit cycles. Development

of these computations is the subject of the next chapter.
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II. ANALYSIS

A. LOSS OF STABILITY

The characteristic equation of (8) is,

*s + a 2 s2 + als + (ao + K) = 0. (9)

Application of Routh's criterion to system (9) yields the critical value of K,

K., for stability of ci = M3 = 0,

K = a -a2 - a0 . (10)

If K < K, the system is stable, whereas for K > K, it becomes unstable.

The value of K,, given in equation (10), ezpressed in decibels represents the

gain margin of the system.

At the critical point, K = aa 2 - a., the characteristic equation (9) is,

83 +aC1 2 a3 s a08+ala = 0,

which has roots,

s,= +V/ii, (11)

83 - 12 •

Therefore, we can see that the above loss of stability is characterized by the

existence of a pair of purely imaginary roots. As K crosses K., one pair of

complex conjugate roots of (9) crosses transversally the imaginary axis.
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A situation like this in which a certain parameter is varied such that

the real part of one pair of complex conjugate eigenvalues of the linearized

system matrix crosses zero, results in the system leaving its steady state

in an oscillatory manner. This loss of stability is called Hopf bifurcation

(Guckenheimer & Holmes, 1983) and generically occurs in one of two ways,

supercritical or subcritical. In the supercritical case, stable limit cycles are

generated after the nominal straight line motion loses its stability. The am-

plitudes of these limit cycles are continuously increasing as the parameter

distance from its critical value is increased. For small values of this critical-

ity distance the resulting limit cycle is of small amplitude and differs little

from the initial nominal state. In the subcritical case, however, stable limit

cycles are generated before the nominal state loses its stability. Therefore,

depending on the initial conditions it is possible to diverge away from the

nominal straight line path and converge towards a limit cycle even before the

nominal motion loses its stability. This means that in the subcritical Hopf

bifurcation case the domain of attraction of the nominal state is decreasing

and in fact it shrinks to zero as the critical point is approached. Random

external disturbances of sufficient magnitude can throw the vehicle off to an

oscillatory steady state even though the nominal state may still remain sta-

ble. After the nominal state becomes unstable, a discontinuous increase in

the magnitude of motions is observed as there exist no simple stable nearby

attractors for the vehicle trajectory to converge to. Distinction between these

two qualitatively different types of bifurcation is, therefore, essential in the
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design of the autopilot. The computational procedure requires examination

of the higher order terms in the equations of motion and it is the subject of

the next section.

B. COORDINATE TRANSFORMATIONS

System (8) is written in the form,

i = Ax + g(x), (12)

where A is the linearized system matrix and g(x) contains the cubic terms.

At the bifurcation point K = Kr., matrix A has eigenvalues given by (11),

and eigenvectors,

T = 1 0 -Cf2 (13)V 41

By taking T to be the matrix of critical eigenvectors of A, the transformation,

x=Tz, zzT-lx, (14)

transforms system (12) into its normal coordinate form,

= T-1 ATz + T-'g(Tz), (15)

where,
C1 raa2  al + 4 a 2C1

T- 1 2 Val 0 -Vfai (16)
a, + a2 al 0 1

and,

T-1AT =[0 0 (17)

0 -a2



For values of K close to the bifurcation point K., the matrix T-'AT

becomes,

WL -( 1 /a + 0
T-'AT = Val + W'C CIE 0

0 0 -a 2 +p'e

where e denotes the criticality difference,

K -K- ,K, (19)

and a is the derivative of the real part of the critical eigenvalues with respect

to c, w is the derivative of the imaginary part of the critical eigenvalues with

respect to e, and p9 is the derivative of the third eigenvalue s3 with respect

to e. These are computed using a perturbation series approach as follows.

The characteristic equation (9) can be written in the form,

s3 + a 2s2 + als+ + (ala 0+2 +C) = 0, (20)

where we have used (10) and (19). The roots of (20) are expressed as,

$I = aeE-(V-•I+ W')i, (21)

s2 = a'e +(V/'++de)i, (22)

s3 = -a 2 + je . (23)

If we substitute (21) through (23) in (20) and neglect terms of order 0, e3 ,

we get,

1
2! - a-2 (24)2(al + 2)

S 2,/'(a2 + a2) (25)

1 (26)

8al a12
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C. REDUCTION OF ORDER

The physical variables zi are related to the normal coordinates zi through

(14), and using (13) we get,

1
1 = 1

W2 = z 1 - a 2z8 , (27)

03 = - (alZ3+ 04 X3.

It can be seen from (26) that pr < 0, and therefore the eigenvalue a3 is

locally (for e small) negative, as shown in equation (23). In fact, a quick

root locus plot of (9) will show that s3 is negative for all values of K >

0. Therefore, the flow of (8) in the direction of z3 converges to zero. All

interesting bifurcation phenomena are locally restricted on a two dimensional

manifold that decsribes the time evolution of the critical coordinates Z1, z2;

this is the center manifold of (8). According to the center manifold theorem

(Guckenheimer & Holmes, 1983), the stable coordinate z can be expressed

as a function of the critical coordinates z1 , zý, and this relationship is at least

of quadratic order. In fact due to the symmetry in our problem, the above

relationship is of third order. Therefore, z3 does not affect the nonlinear

terms in (15) and we can write (27) in the form,

1
zl -- a v/ Z2

X2 = ZI (28)

W3 = Val Z2•

9



Using (28) we can write,

g(Tz)= 0 J
-K341ct,

and,

[ai a2 74 - K34cl2 /a 2 1
T)_ 1 3a7- Ks4/aq)I

a1l + aj ay4-Ks/f2  / J3/

Using equations (18) and (29) we substitute in (15) and write the normal

equations in zj , z2 as,

il = 'eCz - (V'al +W'/e)Z 2 + Fi(z,,Z2), (30)

i = (v/• "+W'e)ZI + e•• 2 + F2 (zi,z2 ), (31)

where,

F (ziz2) Ca1a 2  -3 a 2  K,4 (32)

a,) +_ (a, + 4 )a1  K
F2 (ZZ 2 ) + 4)a 4 (33)

F,(x,=) a1= +ao• z (a1: +aaK3

Equations (30) and (31) describe the suspended center manifold flow of (15)

(Guckenheime- '- 'olmes, 1983).

D. AVERAGING

If we introduce polar coordinates in the form,

zl=Rcosf, z2 =RsinG, (34)

10



we can write equations (30), (31) as,

- eR + Fi(Rcos0, Rsin)cooe

+F2 (R cos e, R sin 0) sin G, (35)

R9 = (vi/+w'e)R+F2 (Ros9,Rsin9)cos9

-F,(R co 0, R in) sin . (36)

Equation (35) is written in the form,

A = deR + :P(O)R3, (37)

where the function P(O) is 2It-periodic in the angular coordinate 9,

*P19 + t a2 _-f C~s 4 e- % 72K3 cos 0 sins 3
2 (aI• + Cf2)a3/

al + a2  2a1
+- al coss3 in a + K 3 sin" . (38)

a1 +c aI(a,1 + Ct)

If equation (37) is averaged over one cycle in 9, we get an equation with

constant coefficients,

R=a'eR + W , (39)

where

27 • r ed. (40)

Substituting (38) into (40) and evaluating the integral yields,

3 •~a27y + K3 (41)
8 a,(a, + 4) (

Similar averaging can be performed for equation (36) which has the form,

(421+ w'c + -(O)R (42)



where - -

'F(e) = a, +a f + a al1 K3co snG

al a2 7c s 3 8sinG+ a/2 -K3 sin', (43)
a, +al a,3/(a + C4)

and we have assumed R # 0. The averaged form of (42) is,

V = v'+w'e+9R2 , (44)

where

G= j f (O) de, (45)

and using (43),
-3a2•" a 2a7' - K3 (46)

8 a3,2 (aei + C4) (6

The system of equations (39) and (44) exhibits similar stability properties

to the original system (37) and (42) (Chow & Mallet-Paret, 1977), and is

studied in the following section.

E. LIMIT CYCLE ANALYSIS

Equation (39) has two steady state solutions, one at R = 0 which corre-

sponds to the trivial equilibrium solution at zero, and one at

' =.(4 7)

This equilibrium solution corresponds to a periodic solution or limit cycle

in the cartesian coordinates z1 , z2 from (64). Since a' as seen by (24) is

12



always- positive, existence of these periodic solutions depends on the value of

Q. Specifically,

"* if Q < 0, periodic solutions exist for e > 0 or K > K,, and

"* if Q > 0, periodic solutions exist for e < 0 or K < K,.

The Floquit exponent of (39) in the vicinity of (47) is

S= -2a'e , (48)

and we can see that

"* if periodic solutions exist for K > K, they are stable, and

"* if periodic solutions exist for K < K, they are unstable.

We refer to the first case as the supercritical Poincari-Andronov-Hopf (PAH)

bifurcation and to the second case as the subcritical PAH bifurcation (Guck-

enheimer & Holmes, 1983).

The period of these limit cycles is computed by substituting (47) in (44),

T = 27r•e•P = ! (_1 - "Q- " +0(0'). (49)

The amplitude of the limit cycles is computed from (47) and (28), and in

terms of the physical variables MI, Z2, 03, we get,

=l a2 -2- - K (50)

X2 = 2- , (51)
3 c? 2 + K3(51)

13



-3 2a 2f la -+ - K (52)

We can see that in the supercritical case, on loss of stability of equilibrium

the steady state becomes a periodic oscillatory state, the amplitude of the

oscillation being proportional to the square root of the criticality e, the differ-

ence of the gain K from its critical value K. at which stability of equilibrium

is lost. This form of loss of stability is called "soft" loss of stability since

the oscillating state for small c differs little from the equilibrium state. In

the subcritical case, before the steady state loses stability the domain of

attraction becomes very small as is bounded by the amplitudes of the un-

stable limit cycles, and a random disturbance can throw the system off its

equilibrium state even before its domain of attraction has completely disap-

peared. This form of loss of stability is called "hard". Here the system leaves

its steady state with a jump to a different state of motion which can be a

stable oscillation with a locally discontinuous increase in the amplitude, a

more complicated bounded motion, or even an unbounded motion depending

on other higher-than-third order terms that have not been incorporated in

system (8).

14



MI. RESULTS AND DISCUSSION

A. RESULTS

For demonstration purposes we assume that in the case K = 0 the system

has been designed in accordance to the ITAE optimal criterion for third order

systems; i.e.,

a 2 = 1.75w.

a1  -= 2.15w., (53)

ao = W,

where the natural frequency w,, is in general selected according to the desired

bandwidth of the system. The ITAE criterion is a standard performance

index and it minimizes the integral time absolute error f0" tie(t)I di, of the

step response e(t) of a system (Dorf, 1992). This criterion is satisfied for

a third order system when the coefficients of its characteristic equation are

selected as in equations (53). The critical value of K for stability is computed

by,

K -= ala 2 - ao = 2.7625w . (54)

A graphical representation of equation (54) is shown in Figure 2 for a nominal

range of w,. between 1 and 2 rad/sec.

The cubic coefficient Q that dictates the nature (supercritical or subcrit-

ical) and stability of the resulting limit cycles as K exceeds K, is given by

15



20 -

15

1 1.1 3.2 13 1 .4 1.5 3.6 1.7 3.6 1.9 2

'Rn

Figure 2: Critical value K,, versus w,,

X3=-5

-0.1
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(41), and using (53) we get,

Q = 0.270 7w,,y + 0.0112L3 (55)
W'4

A plot of equation (55) for K3 = -5 and four different values of ,y is shown

in Figure 3.

Based on the results presented in Figure 3, the following observations can

be made: (1) For fixed Ks and a given value of w,,, supercritical bifurca-

tions are ensured for a value of -y less than a critical threshold, computed by

equating Q = 0. (2) In the case of supercritical bifurcations, we expect to see

an oscillatory response approaching zero when K < K, and converg to a

periodic solution for K > K,. The above response should be independent of

the initial conditions, at least locally. (3) In the case of subcritical bifurca-

tions, we expect to see an oscillatory response for K < K, which may or may

not converge to zero. This depends on the initial conditions. If the response

diverges from zero, the final attractor can be another oscillation or a more

complicated motion. The same is true for K > K,, here the response should

diverge regardless of the initial conditions. These conclusions are confirmed

in the next section using direct numerical integrations of equations (8).

B. NUMERICAL SIMULATIONS

An example of supercritical behavior is shown in Figures 4 and 5. In both

of these figures we present results based on direct numerical integrations of

17



equations (8) for the following conditions,

w.=2, K=1.05K , K3=-5, y=-0.1 (56)

For these conditions, which are selected to demonstrate the supercritical case,

we can see from Figure 3 that Q < 0 and, therefore, we have a supercritical

Hopf bifurcation. Figure 4 shows dearly the development of a stable periodic

solution with amplitude W2 = 0.68 ai.d period T = 2.14. The theoretical

value for the limit cycle amplitude is computed from (56) and (51), as z2 =

0.6405 which is in excellent agreement with the numerical value. Likewise,

the period of oscillation is found from (56) and (49), as T = 2.1351 which is

also close to the actual period. Figure 5 shows the convergence to the limit

cycle in the (z 2 ,i 2) phase subspace using two sets of initial conditions. One

set (10,z2 ,z0s) = (0,0.5,0) is located inside the Emit cycle and the other set

(WIW 2,z 3 ) = (0,1,0) is located outside the limit cycle. It can be seen that

both trajectories converge to the, numerically computed, periodic solution.

An example of subcritical behavior for K > K, is shown in Figures 6 and

7. In both of these figures the conditions were the same as (56) with the

exception of -f which was -y = 0.2 for Figure 6 and -- = 0.1 for Figure 7.

These correspond to Q > 0 as can be seen from Figure 3, which confirms the

subcritical behavior. The motion which corresponds to -y = 0.2 is strongly

subcritical and it becomes unbounded shortly after 20 seconds. The motion

which corresponds to -y = 0.1 is less subcritical since it yields a smaller, but

still positive, value for Q. As seen in Figure 7, it appears that trajectories

18
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-0.
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Figure 5: Phase subspace plot (ZII,ill) for Wn, 2, K = 1.05Kg, K3 =-5,7 -0.1,
and two initial conditions
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4

14 0

-2

-3 ..

-4 ,,

0 5 10 15 20 25

t

Figure 6: Time history (t, z2) for w, = 2, K = 1.05Kg, K3 = -5, and y = 0.2

converge to a relaxation oscillation of high amplitude.

An example of subcritical behavior for K < KI is shown in Figures 8 and

9, for the following conditions,

w,,=2, K=0.95Kc, Ks=-5, 7-=0.2, (57)

and different initial conditions in 22. For small initial conditions, (Z, 92, 1X) =

(0,0.1,0), the system is located inside the unstable limit cycle and it con-

verges to the stable equilibrium, as shown in Figure 8. However, for large

initial conditions, (2Tl,Z2,23) = (0,0.5,0), the system trajectory is located

outside the unstable limit cycle and it diverges away from the equilibrium,

even though this equilibrium is still stable. It appears from Figure 9 that, for

small -f, the system converges to a relaxation oscillation, while higher value

20



10

0

-4 -3 -2 -I 0 I 2 3 4

z2

Figure 7: Phase subspace plot (:2,92) for w,, 2, K = 1.05K,, K3 = -5, and
7 = 0.1

of 7 generate more severe subcritical behavior and the motion becomes un-

bounded, as before. In the case of supercritical behavior and for K < Ku,

we observed that numerical integrations converged to the stable equilibrium

regardless of the initial condition in X2, as they should.

C. MULTIPLE EQUILIBRIUM STATES

So far, our analysis has been on stability properties of the trivial equilib-

rium of (8), and its bifurcations to periodic solutions. It is possible, however,

that additional equilibrium points may exist. To explore this, we write sys-

21
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Figure 8: Time history (t, X2) for w,=2, K =0.95K~, K 3 =-5, 0.2, and
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Figure 9: Time history (t,X2) for W1., 2, K 0 .95K,, 1K3 = 5, 0.2, and

=0) =0.5
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K3

Figure 10: Steady state solutions XI versus K3 for K = 0.95K., "1-y 0, and three
values of w,,

tem (8) in the form,

21 = M22+72, (58)

22 = M3, (59)

:23 = -(ao + K)zi - a 1 22 - •t2X - K 3 a,. (60)

In order to compute its equilibrium points we must set the time derivatives

il, z2, z3 zero, and solve for the equilibrium point X 1 , X 2 , X 3 . We examine

the case 7 Ž 0 first.

Equation (58) yields,

X2 + tX3 = O, (61)

which, since -y -! 0, has only one solution, namely X2 = 0. Equation (59)

23
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Figure 11: Time history (t,vj) for ;,, - 2, K = 0.95Ke, K3 = -5, 7 - 0, and two
initial conditions in x,

gives X 3 = 0, and then (60) can be solved for the remaining equilibrium

solution X1 ,

Xl(to + K + K 3X2) = 0. (62)

Equation (62) admits the trivial solution, X, = 0, always, and two more

possible solutions provided K3 < 0, given by,

X K2  (63)

Equation (63) yields two additional symmetrically located equilibrium points

which are generated as K3 becomes negative. A typical plot for K = 0.95K,

and three values of wa, = 1, 1.5, 2 is presented in Figure 10. Therefore, we see

that the same coefficient, K3 , which governs the transition from subcritical
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to supercritical bifurcations to periodic solutions of the trivial equilibrium

state, is also associated with the existence of additional equilibrium states.

In order to analyze the stability properties of these solutions we linearize

equations (58) through (60) in the neighborhood of Xi. If we denote by ýj the

deviation of :, from equilibrium; i.e, m = :, - X,, we can write the linearized

system as,

42 =6•, (64)

• = -(ao + K)ýI - ajt2 - :•24 - 3K 3XI

If we substitute (63) in (64) we get,

42 = 6 (65)

S--- 2(ao + K)ýi - tl f2 - 02 .

The characteristic equation of (65) is,

s. + ± r25s + als - 2(ao + K) = 0, (66)

which means that the additional non-trivial equilibria are clearly unstable

with divergent dynamics. Therefore, the case K 3 < 0 which was shown to

be beneficial from the point of view of Hopf bifurcations, is undesirable from

the point of view of static bifurcations. The final compromise depends of

course on the particular demands and specifications of the design. Figure 11
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and X2 #960

demonstrates the divergent properties of the additional equilibrium states

for K 3 < 0. Two numerical simulations (t, 21) are shown for 1K3 5

w,= 2, and K = 0.95K,, and for two sets of initial conditions, (01, 2 2,03)=

(2.40,0,0) and (0 1 ,0 2 ,03) = (2.41,0,0). The unstable equilibrium X, is

located at 2.408 as predicted by (63). We can see that, as expected, numerical

simulations inside the stable potential well, x, < X1 , converge to zero while

those outside, x, > XC1, diverge and quickly become unbounded.

The case -y < 0 can be analyzed similarly. Equation (61) admits in this

case the trivial solution X2 =0 which was analyzed previously, and two more
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Figure 16: Time history (t, r1 ) for K32, K 1.0 5K,, Ka = -5, c t = -0.1, and
two initial conditions in x,
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symmetrically located solutions,

X 1 2 (67)7

Then Xs = 0 while X, is obtained from (60) as the solution to,

(aO + K)X, + aX 2 + K3 Xj' = 0. (68)

A typical solution set of (68) is presented in Figure 12 for w,, = 2, K =

0.95Kc, and 7 = -0.1 with X 2 given from (67). If we compare this to the

corresponding solutions for 7 = 0 shown in Figure 10 we can observe that

the nontrivial solutions for y = 0 retain their shape, these are denoted by

outer in Figure 12. The main difference here is the existence of two outer

solutions for most of the range of K3 . The trivial solution X 1 = 0 of Figure

10 perturbs in this case into the solution labeled as inner in Figure 12. It

can also be observed that there is a point, in this case at about K3 = -4.8

where the lower outer solution coalesces with the inner solution. For values

of K3 less than this critical point only the upper outer solution remains.

Stability properties of these solutions can be established by linearization.

The linearized system of (58) through (60) for XC2 # 0 takes the form,

1 -2C,

=6, (69)

f = -(ao + K + 3KgX,)•l -al& -a2f.

The characteristic equation of (69) is,

a3 3+022 + als - 2(ao + K + 3KsX2). (70)
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Numerical computation of the roots of (70) revealed that both the inner solu-

tion and the upper outer solutions were unstable. The lower inner solution is

initially stable, in other words the point where the lower outer and the inner

solutions of Figure 12 meet is a saddle-node point. The degree of stability

of the lower outer solution, defined as the largest real part of the three roots

of (70), is plotted in Figure 13 versus K3. This corresponds to a complex

conjugate root. We can see that it is initially stable and that it undergoes a

Hopf bifurcation at a value of K3 approximately -4.15.

These results are confirmed by the numerical integrations presented in

Figures 14 through 16. For K3 = -4.6, the lower outer equilibrium solution

is stable. Therefore, the numerical simulations will converge to either this

solution or the trivial equilibrium depending on the initial conditions, see

Figure 14. The trivial equilibrium is a rather weak attractor in this case

since K is very near its critical value K,. For K3 = -3, the lower outer

equilibrium point has become unstable and is surrounded by a stable limit

cycle. Depending on the initial conditions, trajectories will converge to either

the stable trivial equilibrium or one of the two stable limit cycles, see Figure

15. Apparently there exists a region where the final outcome is sensitive

to the choice of initial conditions, and the corresponding transient response

resembles a random pre-chaotic motion before the trajectories converge to

the corresponding attractor. This limit cycle persists as K exceeds K,, see

Figure 16. In this case the trajectories will converge to either the trivial or

the non-trivial limit cycles, depending again on the initial conditions.

30



--IV. CONCLUSIONS AND RECOMMENDATIONS

This work presented a methodology for assessing the dynamic response of

a third order system with respect to changes in its gain. Choice for the

baseline system was motivated by modeling the fundamental dy ramics of an

autonomous vehicle. The methods, however, are of general nature and can

be applied to any given system. An extensive study of the dynamic loss of

stability was performed based on Hopf bifurcation theory techniques. The

existence of both subcritical and supercritical bifurcations to periodic solu-

tions was established depending on the system parameters. It was shown that

the critical system gain for stability is useful for design purposes only to the

extent that it is accompanied by supercritical bifurcations. The latter can be

studied using a comprehensive nonlinear study like the one presented in this

work. Future work should concentrate on dassifying the nonlinear dynamics

of various dynamical systems in terms of their order and linear/nonlinear

properties. Such a generalization could allow the establishment of a more

reliable set of measures than the linear gain margin, which would be used in

control system design.
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